初中数学思想方法(函数与方程思想)

2019-12-11 06:38:40

  函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

  方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0.可以说,函数的研究离不开方程.列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

  函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f (x)的单调性、对称性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、反比例函数、二次函数等的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

  函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是中考考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;如列表、规律探究等都可以看成n的函数,用函数方法解决。

  函数研究是数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支。函数思想以函数知识做基石,用运动变化的观点分析和研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来一股很强的创新能力。因此,越来越成为数学中考的长考不衰的热点。

  函数思想与方程思想的联系十分密切。解方程f(x)=0就是求函数y=f(x)当函数值为零时自变量x的值;求综合方程f(x)=g(x)的根或根的个数就是求函数y=f(x)与y=g(x)的图象的交点或交点个数;合参数的方程f(x, y, t)=0和参数方程更是具有函数因素,属能随参数的变化而变化的动态方程。它所研究的数学对象已经不是一些孤立的点,而是具有某种共性的几何曲线。正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库。

  函数思想在中考中的应用主要是函数的概念。性质及图像的应用,包括显化、转换、构造、建立函数关系解题四个方面。

  方程思想是从问题的数量关系出发,运用数学语言将问题中的条件转化为方程、不等式或它们的混合组,通过解方程(组)、不等式(组)或其混合组使问题获解。包括待定系数法,换元法、转换法和构造方程法四个方面。

  1.显化函数关系

  在方程、不等式、最值、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而使用函数知识或函数方法使问题获解.

  2.转换函数关系

  在函数性态、曲线性质或不等式的综合问题、恒成立问题中逆求参数的取值范围,按照原有的函数关系很难奏效时,灵活转换思维角度,放弃题设的主参限制,挑选合适的主变元,揭示它与其它变元的函数关系,切人问题本质,从而使原问题获解.

  3.构造函数关系

  在数学各分支形形色色的数学问题或综合题中,将非函数问题的条件或结论、通过类比、联想、抽象、概括等手段,构造某些函数关系,利用函数思想和方法使原问题获解,是函数思想解题的更高层次的体现,构造时,要深入审题,充分发掘题设中可类比、联想的因素,促进思维迁移.

  4.建立函数关系

  对于实际问题,在正确过好事理关,文理关,明白题意后,根据题目的要求,选择相应的函数关系建立数学模型,利用函数的性质解决问题,是函数思想应用的一个热点,也是高考的热点.

  5.待定系数法

  把题目中待定的未知数(或参数)和已知数的等量关系揭示出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.

  6.转换方程形式

  把题目中给定的方程根据题意转换形式,凸现其隐含条件,充分发挥其方程性质,有关方程的解的定理(如韦达定理,判别式、实根分布的充要条件)使原问题获解,是方程思想应用的又一个方面.

  7.构造方程法

  分析题目中的未知量,根据条件布列关于未知数的方程(组),使原问题得到解决,叫构造方程法,是应用方程思想解决非方程问题的极富创造力的一个方面.

  8.建立方程模型

  数学应用题的数学模型为方程,或必须使用待定系数法确定某些字母的值时,应建立相应的方程(组),把问题转化为方程求解.

  9.函数思想与方程思想的联用

  在解综合题中,解决一个问题常常不止需要一种数学思想,而是两种数学思想方法的综合运用.例如函数思想与方程思想的综合运用.它们之间的相互转换一步步使问题获得解决,转换的途径为函数——方程——函数或方程——函数——方程等.

  来源:赣州上犹邱至悠数学工作室